Проректор ЮУрГУ Сергей Ваулин — о том, почему мы по‑прежнему делаем ракеты и что нового в этой области придумали челябинские ученые
Сегодня на полигоне Нижнесалдинского НИИ машиностроения (НИИМаш, г. Нижняя Салда, Свердловская область) успешно прошли испытания модельного жидкостного ракетного двигателя (своего рода демонстратора технологии) для первой российской возвращаемой ракеты-носителя. Проект создания возвращаемой ракеты — идея Государственного ракетного центра им. Макеева (ГРЦ, г. Миасс, входит в корпорацию «Роскосмос»), разработка двигателя — крупнейший проект Уральского межрегионального научно-образовательного центра мирового уровня (УМНОЦ) «Передовые производственные технологии и материалы», и осуществляется учеными ЮУрГУ в сотрудничестве со специалистами ГРЦ и НИИМаш. ИА «Первое областное» попросило проректора ЮурГУ по научно-образовательным центрам и комплексным научно-техническим программам Сергея Ваулина рассказать об особенностях разработки.
— Все большая коммерциализация, использование возможностей космоса, космической техники для больших, массовых коммерческих проектов — одна из основных тенденций современной космонавтики. А коммерция — это прежде всего вопросы себестоимости полетов и цены как собственно выводимого на орбиту груза, так и носителей, выводящих этот груз на орбиту. И, конечно, наиболее эффективно будет работать с возвращаемыми носителями, многоразовыми. Отсюда и идея полностью возвращаемой ракеты-носителя.
В этой идее абсолютно нового нет ничего — как вы знаете, человечество уже создавало многоразовые носители — будь то американские «Шаттлы» или наш, советский «Буран». Но те подходы, при всем величии этих программ, все-таки были другими. И форма возвращаемого носителя была ближе к самолетам, и все равно при запуске большая часть системы доставки — ракета, разгонные блоки и т. д. — все равно погибали.
— Но есть и современные проекты возвращаемых носителей. Взять хотя бы ракеты компании Илона Маска.
— Безусловно. Но и эти разработки предполагают возвращение на землю лишь части ракеты, ее первой ступени, а не всей ракеты целиком.
У деления ракеты на ступени есть свои плюсы, но есть и минус — это именно ступенчатость, когда разные части ракеты, отработав свое на разных высотах, должны как-то вернуться назад. И то — по частям, а не вместе, в первоначальном виде.
Главная же «загвоздка» в том, что те двигатели, которые у ракеты работают в космосе, не смогут работать при возвращении в условиях земной атмосферы, ее нижних слоев. Все просто, основные законы физики — уровень давления атмосферы на разных высотах разный.
Соответственно единственный вариант полностью возвращаемой ракеты — одноступенчатый. И в том случае, когда на ней используется определенный тип двигателя — реактивный двигатель с центральным телом, вокруг которого расположены камеры сгорания. Такая схема позволяет двигателю, у которого просто нет внешней стенки сопла, эффективно работать в куда бoльшем диапазоне давления, и, соответственно, на самых разных высотах.
— То есть ракета будет и взлетать, и садиться с помощью одного и того же двигателя?
— Именно так. Плюс, конечно же, кроме маршевого двигателя у ракеты будут и двигатели управления, которые будут установлены в самых разных ее частях.
Конечно, двигатели с центральным телом разрабатывались и раньше. Но они требовали либо так называемой кольцевой камеры сгорания, либо каких-то других решений. Для области малых тяг это решение вполне применимо, и такие двигатели испытывались, и способны работать в верхних слоях атмосферы. Хоть и не без минусов — яркое свечение, расхождение исходящих газов и так далее. И эти минусы в итоге и не дали развить эти двигатели до уровня массового применения.
А когда речь идет про двигатели, рассчитанные на большую тягу (а параметры разрабатываемой ракеты — это около 30 метров в высоту, примерно 300 тонн массы и, в зависимости от места старта от 8 до 12 тонн полезной нагрузки, выводимой на орбиту), то возникает вопрос: а как достичь необходимых для подъема и вывода на орбиту 400—500 тонн тяги? Добавьте к этому требования по надежности — различные части ракеты должны быть рассчитаны на 25- , 50- и даже 100-кратное использование.
Таких камер сгорания, таких двигательных установок с центральным телом подобной тяги еще не делали.
Возникла идея окружить центральное тело обычными ракетными двигателями, которые и будут направлять исходящие из них потоки газов под центральное тело. Первые публикации на эту темы были сделаны в начале 2000-х годов, и вообще нужно сказать, что за рубежом наши коллеги выполнили довольно большой объем расчетно-теоретических работ.
Были и экспериментальные работы. Наиболее близкая к нашей работа была проведена в США, кажется в 2010 году, на компонентах топлива «спирт-кислород». Но эта работа так и не была завершена, потому что опыты оказались неудачными — на испытаниях были зафиксированы отказы двигателей.
Были еще и так называемые «холодные продувания», когда камеры сгорания продувались холодным воздухом. Да, убедились, что сама идея работает — потоки газов подстраиваются под давление окружающей атмосферы. Увеличивали и количество камер сгорания — начинали с восьми и в итоге дошли до 16. Большим количеством уже очень трудно управлять.
Мы в ЮУрГУ, в общем, тоже пошли по этому же пути, но в нашем варианте двигателя довольно много изменений по сравнению с тем, что создавали наши коллеги раньше. Отработали это все и в итоге создали «в металле» установку, которая является своего рода демонстратором технологий. Теперь нам важно испытать его в деле.
Вообще же задача по созданию многоразовой возвращаемой ракеты предполагает огромный объем работ, исследований, компетенций не только в части двигателей, но и по части баллистики, материаловедения, ракетного топлива, систем управления, навигации, связи… Задача в чем-то равнозначная по уровню тому же «Бурану». Но — уверен — решаемая.
— Вы перечислили области компетенций, необходимых для создания ракеты. Чем из этого обладает ЮурГУ?
— Прежде всего — в областях материаловедения, систем управления, двигательных установок.
Но мы же все-таки высшее учебное заведение и занимались не только наукой. В последние лет 10, когда ЮУрГУ был структурирован по-новому и был воссоздан политехнический институт, мы начали возвращаться к проектному обучению, которое на самом деле часто использовалось во времена СССР. То есть — делать проекты на реальные темы. Без отрыва от учебного процесса. И раз есть реальная тема, то по ней работают все — и профессорско-преподавательский состав, и молодежь, в том числе студенты. И этот симбиоз позволяет нам браться (и решать) за те задачи, которые еще недавно мы бы не взялись делать.
Ели же говорить о двигателе для возвращаемой ракеты, то идея, повторюсь, возникла у специалистов ГРЦ им. Макеева, и мы работаем по этой теме вместе с ними и со специалистами нижнесалдинского НИИМаш, который является одними из ведущих структур в части создания и изготовления ракетных двигателей малой тяги для управления полетом космических аппаратов.
Возвращаясь же собственно к разработке, отмечу, что термин «демонстратор технологии» — очень точный, хоть и не присутствует в стандартах. Мы привыкли к терминам «опытный образец», «промышленный образец», «макет» и так далее. Но они не совсем верно отражают то, что именно и для чего именно мы сделали.
Ученые ГРЦ имени Макеева, конечно, продумывая изначальную идею, понимали, насколько сложная и рискованная тема с двигателем. И именно они предложили нам начать, что называется, с «малых форм». Хотя поначалу мы, честно говоря, сопротивлялись, хотели идти более широкими шагами. Но в итоге поняли, что коллеги правы и начинать надо с демонстраторов тех технологий, которые будут применяться в готовом изделии.
Это не только демонстратор двигательной установки, но и, например, демонстратор технологии топливных баков — ведь на реальной ракете в качестве топлива и окислителя будут использоваться жидкие водород и кислород, а это значит, температуры в –252 и –183 градуса Цельсия соответственно. И демонстратор технологии системы управления.
— Каждая из 16 камер сгорания с виду довольно просто устроена…
— Это кажущаяся простота. И не только потому, что малые размеры требуют большей точности при изготовлении изделия. А как охлаждать такой небольшой по площади поверхности двигатель? Ведь чем больше размер, тем больше и возможностей охлаждения. В этом плане маленький двигатель сложнее большого. И это отчасти объясняет то, что созданием и изготовлением микродвигателей, в том числе для ракетно-космической техники, занимаются очень серьезные предприятия.
В нашем случае разработка камер сгорания — совместная с коллегами из НИИМаша. Мы давно сотрудничаем, там работают выпускники ЮУрГУ. Тяга каждого из 16 элементов — от 10 до 30 килограммов, в зависимости от давления, с которым подаются компоненты топлива.
— Не поверю, если вы скажете, что до сегодняшнего запуска установки вы совсем не испытывали ее компоненты в деле.
— Пробные испытания уже были, и они также прошли успешно. Сегодня у нас был демонстрационный пуск, который мы совершили в соответствии с контрактом, заключенным нами с министерством образования и науки Челябинской области.
— Создание такого демонстратора технологий — дорогое удовольствие?
— Достаточно дорогое, как и все, что связано с самыми передовыми научно-техническими разработками. И здесь я не могу не поблагодарить губернатора Челябинской области Алексея Леонидовича Текслера за поддержку (контракт с региональным Минобром — 70 миллионов рублей. — Прим. ред.). Не было бы этой поддержки — ничего бы не было. Кроме областных денег 5 миллионов рублей собственных средств вложил в разработку университет. Плюс мы получили финансирование в Уральском межрегиональном научно-образовательном центре — еще три миллиона. Итого — 78 миллионов. Но дорого это или нет? Для разработок такого уровня — не так уж и затратно.
— Демонстрационный пуск, испытания прошли успешно. Что дальше?
— Сейчас мы продемонстрировали то, что эта технология возможна. С компонентами топлива в виде спирта и кислорода. Думаю, что в следующем году мы перейдем на топливную пару «водород-кислород» в газообразном состоянии. При тех же размерах, что сейчас, двигатели будут давать гораздо более высокую тягу.
А дальше мы перейдем к криогенике, к топливу из жидких водорода и кислорода. Это уже будет максимальное приближение к реальной ракете. И вот тогда мы сможем перейти к демонстраторам технологий ракеты-носителя в целом. Думаю, что такой демонстратор будет раз в пять-шесть меньше реальной ракеты, но должен будет выполнять все реальные функции, включая посадку.
Это очень сложная задача. И касается не только двигательной установки, но и, как я говорил, всех систем ракеты. Например, системами управления занимается целая группа ученых во главе с нашим ректором Александром Леонидовичем Шестаковым. Он сам лично включился в работу. Благо, как вы знаете, является выпускником кафедры систем автоматического управления приборостроительного факультета, доктором технических наук, специалистом в этой области, про которую знает практически всё.
— Разработка, опыты, испытания, создание двигателя, ракеты — это все увлекательно и по-хорошему прекрасно. Но что проект даст университету и Челябинской области в целом?
— На этом проекте уже сейчас растут и учатся студенты, повышают квалификацию молодые ученые и преподаватели. Мы создали молодежное конструкторское бюро, в котором трудятся больше 100 студентов, а также молодежную лабораторию, в которой будут заниматься и физикой с химией процессов, происходящих с топливом, и газовой динамикой.
Кроме того, это серьезные научные исследования, которые были сделаны в рамках наших разработок. Мы подали заявки на патенты двигательной установки и системы управления. Будут написаны (и уже пишутся) научные работы, защищены диссертации… На этом проекте вырастут ученые, и не только двигателисты, но и ракетчики.
Наконец, мы получим целое поколение прекрасных молодых специалистов. Те ребята, которые пройдут школу молодежного конструкторского бюро и лаборатории, гораздо легче будут адаптироваться к работе на тех предприятиях, в которых они устроятся после окончания университета. Студенты, которые в ходе учебы прошли через проекты, подобные этому, поверьте, будут очень востребованы в самых передовых компаниях, занимающихся теми же двигателями, ракетно-космической техникой, системами управления. Мы, конечно, прежде всего думаем о наших коллегах и товарищах из Государственного ракетного центра имени Макеева (улыбается), перед которыми стоят задачи не только оборонного профиля.
— И все равно — «мы делаем ракеты»?
— Мы это умеем. И, собственно, почему мы должны отказываться от этих навыков? Они востребованы не только в военном деле, но и в мирной жизни.